Application of advance techniques for Energy Conservation in Sugar Industry

Abdul Aziz Tahir, Technical Director, Ranipur Sugar Mills, Sindh

Abstract:

Pakistan Sugar Industry is facingtechnical challenges to cut down the production cost for its sustainability in global Sugar Industry. There are number of factors contributing to control the cost of production. One of these is technical upgrading of the Sugar Plants for its energy efficient operation to bring down the Energy cost per ton of Sugar production. The other is the generation of 2nd and 3rd line revenue through by products. Under lined paper has discussed the selection and application of efficient based plant machinery and equipments to achieve the success living in global Sugar Industry. Main focus of the paper is to save bagasse eitherdirect sale it to other consumer or utilize it for generation of surplus electrical energy for other purpose.

Email: abdulaziztahir@hotmail.com

1-Selection of Cane Preparation Devices

Target: +90 Preparation Index with minimum energy consumption

- a. Preparation index or % open cell of prepared cane is directly related to the performance, capacity crushing and energy consumption ofmilling train.
- b. Edward suggested 0.1 % increase in extraction(of 1st Mill) per 1 % increase in Preparation Index.

c. Comparison of Cane preparatory devices

Basis:

Crushing Rate:7000 TCD / 291.7 TCH

Fiber % cane: 14.0 % Fiber rate: 40.84 Tons/hr

i. General Description of Preparatory Devices:

Sr.No.	Machine Type	Dia x Rotor length(mm)	RPM	Tip Speed (M/Sec.)	Preparation Index (%)	Remarks
1	Unigrator	1727 x 1800	850	76.90	+/- 86 %	
2	Shredder	1525 x1980	1200	95.85	+ 90.00	
3	Fiberizer (in line Shredder)	1680 x 1800	1000	88.00	+ 90.00	

ii.Comparison of Installed Power(KW)

Machine	<mark>Total</mark>	1 st Cane	2 nd	1 st	2 nd	Feeding	Carding	Feeding	Machin	Kicker
Type	<mark>Installed</mark>	Carrier	Cane	Cutter	Cutter	Kicker	Drum	Drum	e Rotor	after
	Power		Carrier							Fiberi
										zer
Unigrator	Kw/t.fr/	1.35	1.90	11.0	14.0	-	-	-	35	
	hr.									
<mark>KW</mark>	2605KW	<mark>55</mark>	<mark>75</mark>	<mark>450</mark>	<mark>575</mark>	N/A	N/A	N/A	<mark>1450</mark>	N/A
Shredder	Kw/t.fr/	1.35	1.90	11.0	14.0	-	-	-	50	
	hr.									
<mark>Kw</mark>	3240Kw	<mark>55</mark>	<mark>75</mark>	<mark>450</mark>	<mark>575</mark>	<mark>35</mark>	N/A	N/A	<mark>2050</mark>	N/A
Fiberizer	Kw/t.fr/	1.90	-	-	-	-	-	-	50	-
	hr.									
<mark>Kw</mark>	2280KW	<mark>75</mark>	-	_	_	-	<mark>75</mark>	<mark>50</mark>	<mark>2050</mark>	<mark>30</mark>

iii. Saving with Fiberizer as compared with Shredder

m.saving wi	misaving with riberizer as compared with sineader					
Machine	Installed	Absorbed	Energy	Energy saving	Financial Gain	
Туре	Power(Kw)	Power(@ 85%	Saving per	Kwhr per	(@Rs.15/kwhr)	
		of installed	day	campaign		
		Power)	(Kwhr)	(110 days)		
Shredder	3240	2754	-	-	-	
Fiberizer	2280	1938	19,584	21,54,240	Rs. 32.31	
					Millions	

d. General Arrangement of In line Shredder(Fiberizer)

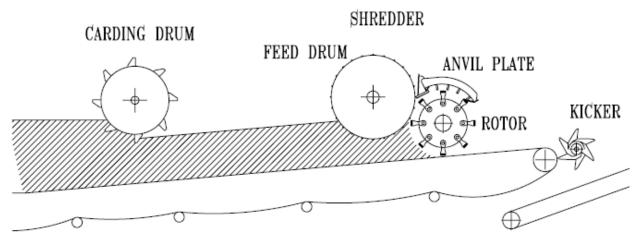


Fig.1 General Arrangement of In line Shredder(Fiberizer)

e. Comments:

i.Less capital, operational and maintenance cost of Fiberizer as compared with Shredder withequal P.I Index.

ii. Wearing of Fiberizer Hammers head is fast but now this is no more issue after the use ofreplaceable carbide tips at hammer heads.

iii. Fiberizer is operated without the allied preparatory equipments, so it cannot by pass in case of any type of stoppage.

iv. Main fault which can occur occasionally with Fiberizer is the breakage of its Rotor Shaft. As machine is blessed with gigantic momentary gain, keeping one rotor without hammers as spare can be abetter solution.

f. Performance monitoring of Preparatory devices

i.Weekly Preparation Index test for 2nd cutter and main machine is necessary. ii.Maintain P.I 65 % after 2nd cutter and recommended P.I after main machine, otherwise take a stop to replace cutter knife edges and change hammertip sides of the main machine.

2. Milling Review

Target: 96 % Mill Extraction with optimum energy consumption

- a. The three roller mill with forced feeder is a common practice in Pakistan Sugar Industry
- b. The application of 2 roll mill without trash plate as 1st mill of milling tandem is passing through experienceof Pakistan Sugar Industry.

c. Shaft Power distribution at conventional three roller mills

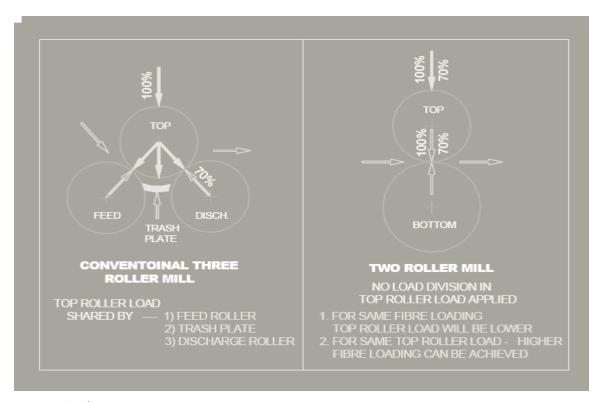
Sr.#	Description	% Power	Remarks
		Consumption	
1	Compression of	64.0	Can be reduced with better P.I and
	Bagasse		making top and feed roller as lotus
2	Metal Bearing	15.0	Can be minimized with application of
	Loss		anti-friction roller Bearings.
3	Trash Plate	14.0	Can be reduced with better mill setting,
			polishing surface of trash plate and
			eliminated 100% by replacing 3 roller
			mills with 2 roller mills.
4	Scrapper	2.0	Standard loss with all mills
5	Pinion Loss	5.0	Standard loss with all mills

(Ref: http://old.shankaranaath.com)

d. Performance evaluation of 2 Roller mills as 1st Mill

Target: + 70.0 % Mill Extraction and 55% Moisture content in bagasse

HMC Pakistan claims:


i.30 % less power consumption with 2 roller mills with equal mill performance of three roller mills.

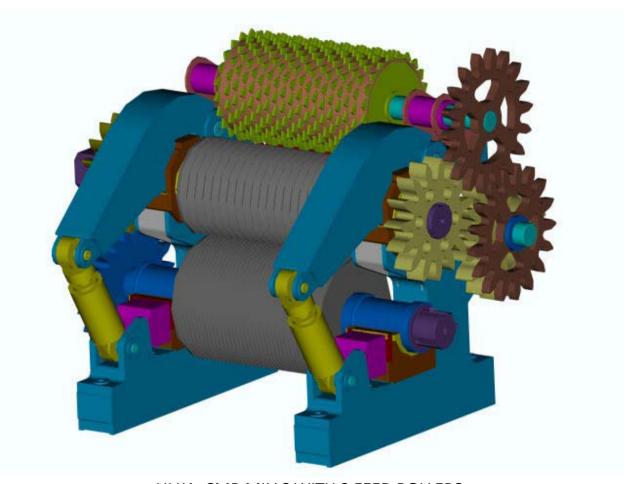
ii.70 % Mill extraction and 60% Moisture content in bagasse is reported as feedback from client.

e. Comparison of 2 roller mills of different makes:

			,
Sr.#	Description	HMC, Pakistan	ULKA, India
1	Mill Type	2 roll with Single	Compact Muti –
		Feeder	Roller Mills(CMR)
2	Hydraulic load on	Top Roller	Top Roller
3	Mill Drive with	Fixed Bottom Roller	Fixed Bottom
			Roller
4	Top Roller	Lotus Type	Lotus Type
5	Feeders	Single	Double
6	Mill Extraction(%)(Client	68 to 77	75 to 78
	Feedback)		
7	Moisture % Bagasse(Client	60 to 62	52 to 54
	Feedback)		

f. Comparison of Shaft Load Shearing of 3 roller and 2 Roller Mills

(Ref: ULKA, India)


g. Benefits of 2 Roller Mills

- Less Shaft Power consumption due to bottom roller drive having no feed roller and trash plate.
- ii. All hydraulic load is available for Bagasse compression whichis 30 % less than 3 roller Mills
- iii. Less capital Cost than same size 3roller mills.
- iv. Less Operation and Maintenance Cost.
- v. Better extraction due to reduction in reabsorption factor with the help of top lotus roller and better juice drainage arrangement made with bottom roller.

h. General arrangement of HMC and ULKA CMR Mill is shown below:

HMC 2 ROLL MILLS WITH SINGLE FEED ROLLER

ULKA CMR MILLS WITH 2 FEED ROLLERS

3. Replacing Steam Turbines with Electric Drives at Milling Tandem Target: *Production of surplus ElectricPower of +19 Kw/ton cane crushed*Comparison of 5 mills tandem equipped with 750 Kw Steam turbines for 8000 TCD Plant.

Sr.#	Description	Single stage B.P Steam Turbine	Induction Motor
1	Energy Requirement of 5 Mills	3750 Kw.hr	3750 Kw.hr
2	H.P (60 Bars) Steam consumption	131,000	47,625 pounds /hr
		pounds/hr	(@12.7lbs/Kw)
		(@35lbs/kw)	
3	Steam Saving with Induction	-	83,375 pounds/hr
	Motors		
4	Surplus Energy Production	-	6565 kw.hr
5	Surplus Energy Production per		19.695Kw/Ton
	Ton Cane		cane crushed
6	Saving with 110 crop day(Rs.259.97 Million
	Rs.15/Kw.hr)		

(ABB Switzerland Ltd)

4. Recommended IEC Classes Electric Mill Drives

a. Table for Classes Description

Sr.#	Description	Class IV	Class V
	Continuous Rating	100 %	100 %
	Overload running-1	125 % for 2 Hrs	150 % for 2 Hrs.
	Overload running-2	200 % for 10	200 % for 60
		second	seconds

(Ref: Danfoss Industries Ltd)

b. Other benefits of Induction Drives

- i. VFD control drive
- ii. Low starting torque
- iii. Low maintenance cost
- iv. Reduced noise
- v-Faster return (Payback within one season)
- vi- Excellent overload protection
- vii-Easy and faster start and stop

5. Heat Loss saving in Flue gases at 1 % moisture drop in Bagasse

Bagasse moisture	51	%
HV of Bagasse at 51 % Moisture	7400	KJ/kg
Water vapour in 1 kg Bagasse	0.51	Kg
Cp of Water	78.63	KJ/Kg. ⁰ C
Bagasse Temperature	50	°C
Heat of 51 % moisture in Bagasse at 50 °C	2005	KJ
Flue gases temperature	200	°C
Heat loss in flue gases due to 51% Bagasse moisture	6015	KJ
Heat Saving with Bagasse Dryer		
Bagasse Moisture after bagasse dryer	50	%
Water vapour in 1 kg bagasse	0.5	Kg
Bagasse Temperature	50	°C
Heat loss in flue gases due to 50% bagasse moisture	5897	KJ
Heat saving in Flue gases after 1 degree drop in Bagasse moisture	117.9	KJ
% Heat saving in Flue gases after 1 degree drop in bagasse moisture	1.594	%

1 % drop in moisture in bagasse saves 1.6 % heat losses in Flue Gases

6. Selection of Efficiency based process house Equipments

a. Vacuum Filters

R & D was done at Ranipur Sugar Mills in off season2010 atFCB made 9 x 18 ft Vacuum Filter to increase mud cake loading and discharging rate . From season 2010-11 to 2013-14, there remained one Vacuum Filter in operation to carry the

mud load of average 5.25 tons per hr with optimum Mud Pol of 1.9 % and moisture content of 77.5 %. Before modification Ranipur operated 2 units of same size with 2 Vacuum pumps for same mud loading. Modified Vacuum Filter was operated with single Vacuum pump. There was saving of 75 Kw motor installed at 2nd Vacuum Pump.

Saving with 110 Crop day season

Electric Energy: 75 x 24x110 = 198000 Kwhrs

Financial Gain: 198000 x 15 = Rs. 2.97 Million per annum

Same designed Vacuum Filter is now available in local market of Pakistan

b. Juice and Melt Heating

Target: Heating the process liquid with Heater of highest HTC with the application of condensate or downstream vapours.

i. Selection of Heater Type

Sr.#	Process	Shell and Tube	Wide gape Plate	Direct Contact
	Liquid	Heater	Type Heater with	Heater
			reverse flow	
1	Primary	В	Α	N
	juice			
	Defecated	A	В	Ν
	Juice			
	Clear Juice	В	A	N
	Melt	С	В	Α
	Heating			
	Condensate	В	A	N

A: 1ST Choice B: 2nd Choice C: 3rd Choice

N: Not recommended

ii. Heat Transfer Coefficient (HTC) and Pressure drop

HTC is proportional to Fluid velocity (V) and pressure drop is proportional to Square of Fluid velocity (V²), So Selection of Velocity is very critical to maintain fast flow through heater tubes or plates, normal recommended velocity range for condensate and juices is 1.5 to 2 m/sec. and for Syrup and Melt 1 to 1.5 m/sec. In all cases of Fluid flow, HTC of Plate type Heater is 1.5 to 3 times higher than tubular Heater. (Cane Sugar Engineering, page 210)

During selection the heating surface of the heater, HTC of heating media must be considered to avoid any practical implication. Following is the Table for HTC (W/m².K) for Heating media:

Sr.#	Heating Media	HTC (W/m ² .K)
1	Exhaust Steam	260 – 1310
2	1 st vapours	250 - 1260
	2 nd Vapours	230 - 730
	3 rd Vapours	150 – 710
	4 th /last effect	320 - 600
	vapours	

Source: Energy Manual for Sugar Factories(2nd edition), page 82

c. Evaporators

Evaporator station is the biggest thermal energy consumer station of the Sugar Factory. It consumes about 90 % of the total steam production of the boilers.

i. Falling Film Long tube Evaporator (FFE)

In Pakistan Sugar Industry, trend to install Falling Film Evaporator (FFE) as 1st effect is encouraging. Many Sugar Factories have successfully trialed the operation. No doubt FFE is the best option as 1st effect in evaporator station due to its built in features.

It offers;

- i.i High Heat transfer Coefficient
- i.ii Temperature difference in heating steam to evaporating vapours is minimum (5 degree)
- i.iii It can operate with higher temperature of Steam up to 130 135 0 C without risk of sugarinversion.
- i.iv It produced high temperature $\mathbf{1}^{\text{st}}$ vapours and steam condensate for best condensate and flash heat recovery .
- i.v Working as 1^{st} effect , Refine massecuite Pans can also operate on 2^{nd} vapours of $105\,^{0}$ C. Thusit offers best heat economy by utilizing down side vapours for heating to other stations.
 - i.vi Its Heating Surface to Volume Ratio is as highest as 240 m²/m³.
 - i.vii It requires less space for installation, single evaporator of heating surface of 6000 Sq.mhave been installed.
 - i.viii Short residence juice time reduced sugar inversion and colour formation.
 - i.ix It requires no steel structure and can be build out side of the process house building.
 - i.x It is very sensitive to operate, must require automation for wetting the tube surfaces and précised distribution of juice in juice distribution box.

Hugot(1986) quotes "the use of FFE as 1st effect of the evaporating station, equipped with vapour recompression together with the use of hot condensate for juice heating may reduce the steam requirement to 35 % on Cane".

ii. Plate Falling Film Evaporator(EVAPplus FFE)

It is the combination of tube and plate evaporators. It offers highest overall HTC than FFE. Operation required automation for insuring the wetting plate and tube surfaces. Fig. A given below describe the operation pattern of the evaporator.

Fig. B gives comparison of HTC of FFE evaporator and EVAPplus FFE Evaporator.

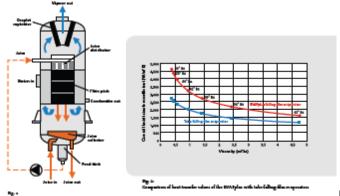
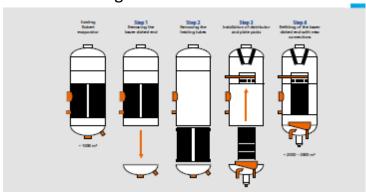



Fig.a Fig.b

ii.i Conversion of Robert Type evaporator to EVAPplus plate pack Evaporator The calandria is removed and replaced with EVAPplus plate pack and the respective distributor. With the minimum expenditure the heating surface are and the system efficiency is considerably increased. Conversion steps are shown below in the Fig.c

d- Energy Balance of Process House with FFE as 1st Effect

Basis: Cane Crushing: 1000 TCD

Pol % Cane: 14.0 % Fiber % cane: 14.0 % Imb. % Fiber: 250 %

i. Evaporator Set Up

1 st Effect(FFE)	2 nd Effect(Robert)	3 rd Effect(Robert)	4 th Effect(Robert)
(Sq.M)	(Sq.M)	(Sq.M)	(Sq.M)
6000.0	6000.0	1000.0	800.0

ii. Vapour Bleeding Arrangement

Heating Station	Heating Media
Primary Juice Heating-I(30 – 45 °C)	4 th vap. through 2 VLJH of 500 + 500Sq.m
	-
Primary Juice Heating-II(45 – 48 °C)	3 rd vapours
Sec. Heating-I (65 – 95 °C)	2 nd vapours
Sec. Heating-II (95 – 103 ⁰ C)	1 st Vapours
Pre-Heating-I (98 – 103 ⁰ C)	1 st vapours
Pre-Heating-II (103 – 110 ⁰)	Exhaust Steam
Melt Heating at TaloRefinery(60 - 90°C)	1 st Vapours
Pan, Molasses tank, Mass. Pumps, Raw	1 st Vapours
Centrifugal washing	
B and C Graining	1 st Vapours
Raw and Refine Pans(A+B+C Conti Pans	2 nd Vapours of 105° C
and Ref. Batch Pans)	

iii. Steam Requirement of Process House

Evaporators	177.32 Tons/hr	42.56 % Cane
Juice Preheating-II	8.32 Tons/hr	2.00 % Cane
Washing Steam for Ref.M and	9.95 Tons/hr	2.39 %Cane
Dryer		
Total Steam Requirement	195.59 Tons/hr	46.94 % cane

a. Continuous Pan Boiling

Benefits of continuous Pan boiling are no more hidden in Pakistan Sugar Industry. Considering all good features of the Continuous pan boiling for raw massecuite, it is very much essential for heat economy to utilize right size of pan (H.S/V ratio not less than 9.0) for right type and quantity of boiling massecuite. Fletcher & Stewart recommended the Typical T-H Continuous Pan Sizes as given below:

i A Massecuite

Massecuite Flow	24	30	36	42	48	54	60	
Rate(Cu.m/Hr.)								
Conti Pan	60	70	80	100	100	120	2 x70	
Size(Cu.m)								

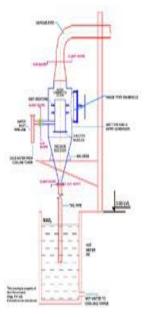
ii B Massecuite

Massecuite Flow	14	17.5	21	24.5	28	31.5	35	
Rate(Cu.m/Hr.)								
Conti Pan	60	70	90	100	120	2x60	2 x70	
Size(Cu.m)								

iii C Massecuite

Massecuite Flow	8	10	12	14	16	18	20	
Rate(Cu.m/Hr.)								
Conti Pan	50	60	70	80	100	100	120	
Size(Cu.m)								

d. Single Entry Vapour Condensers


Target: Reduction in tons of water required to condense ton of vapours

Inefficient Multi jet condensers are being replaced with efficient vapor condenser of many makes and types. One type is Mist type S.S single entry condenser. Block Diagram is shown below:

i Comparison of MREPL(Indian) make Mist Type Single entry condenser and Multijet Condenser

			1
Sr.	Description	Multi jet	Mist Type Single
No.		Condenser	Entry Condenser
1	Vapour s to condensed	45 Tons per hr	45 Tons per hr
2	Condenser approach	15 °C	8 °C
3	Condenser efficiency	40 to 50 %	80 %
4	Water to Vapour Ratio	65 to 70	40 to 45
5	Injection water flow (M3/Hr.)	3150	1800-2000
6	Power consumed at injection Station	195 Kw/Hr	115 Kwhr.
7	Power saved at Injection station	-	80 Kwhr.
8	Power Saving at Spray station	-	80 Kwhr.
9	Total Power Saving in system	-	160 Kwhr.

f.II Sketch of Mist Type Single Entry Condenser

g. Selection of Raw Centrifugal Machines

Target: Operating Machines at full rated capacity with good quality output Sugar

i- Selection Criteria

Massecuite Type	Mass. Feeding Temperature(°C)	Basket Angle/RPM	Specific Power load (Kw/ton Mass cured)
Α	60	30/(1400 – 1600)	3.0
В	55	34/(1600 – 1800)	4.5
С	52-54	34/ (1800 -2000)	4.6

This is experienced that at crushing rate of 4000 TCD, one machine of Type SK-1250 is enough on "B", "C"and safely two on "A" massecuite pre-curing.

h- Selection of Batch Refined Centrifuges

Selection factors of Batch centrifugal.

- a- Less power consumption
- b- High throughput
- c- Less operation and maintenance cost
- d- User to friendly.

Application of Regenerative drives with sequential machine group operation with PLC control and DC-bus to transfer electrical power from machine running in regenerative (deceleration) mode to machine revamping up to monitoring(acceleration) mode or back to main supply station made this station very cost effective. This system development offers 20-25 % energy saving and 25-30 sec reduction in cycle time. Companies also made development to reduce the cycle time through faster discharging dry sugar from the machines. Development of different international companies is presented below:

i-Electrical Drives for Batch Centrifugal Machines

I.i-Non-regenerative Drives

Fitted with a non-regenerative drives, centrifugal would have a very high energy consumption and, in addition, during braking would produce a lot of energy in the form of dissipated heat.

i.ii-Regenerative Drives

These drives allowed the energy produced during braking fed back to the supply system, which means that the net energy consumption of the centrifugals is reduced by 80% or more. The problem of heat dissipation is also eliminated.

i.iii- Broadbent Vacon AFE (Active Front End) Drives

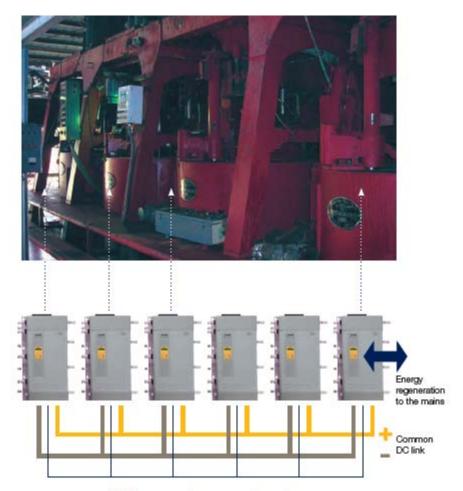
These are regenerative drives of special types that incorporate controllable solid-state switches in their input section. With conventional regenerative drives, loss of supply while the centrifugal is braking frequently leads to failure of the main fuses in the drive system, not only is this a major inconvenience, the fuses are also special semiconductor protection types that are expensive to replace. With the Vacon AFE drives, this problem does not occur (Broadbent spin energy saving with Vacon drives)

i.iv- DanfossVLT Load Sharing System with the use of single speed AC motor

Danfoss introduced low cost solution of VLT load sharing system against AFE drives. Donfoss required at least two machines to be operated in group for energy sharing to each other through bus bar with controlled mechanism, where two centrifugals operate alternately using the load sharing application of the drive. The energy released from motor running in regenerative(decelerating) mode is delivered to other drive which is running in motoring(accelerating) mode through common DC -bus. The 1st motor will run at the pre-set time and after the process time is consumed, the second motor will then restart with the energy released of the 1st motor during decelerating.

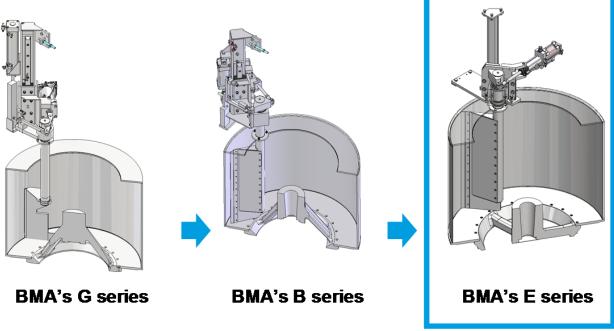
iv.i Benefits of VLT drive

iv.i.i- Load sharing is cheaper than drives with regenerative function, high efficient (98%) and user friendly.


iv.i.ii-No overloading the supply transformer.

iv.i.iii-Saving of 15-20 % compared to using brake resistor.

i.iv-Parker SSD'S Solution


Parker offers regenerative drives linked on common DC bus and sequenced in a way to which reduces the overall electric demand of the system. During operation of the machine, the energy from spinning centrifugal is no more wasted as heat in braking resistor but transferred to monitoring centrifugal via a common link. The energy is fed back to the main when machine is globally regenerating.

The solution installed at SCISM(a Philippines Sugar Company). Where refined station included six Batch centrifugal machines of 1000 kg per charge and installed power of 180 Kw. Improvement resulted in reduction of cycle time from 180 sec to 150 sec to produce 4000 kg extra sugar per hr and about saving of 25 % of the overall power consumption from the main.

High speed sequencing bus

ii-Cycle Time Control

ii.i-Five Cail-ZUKA

FC has developed an innovative principle, based on simultaneous working of 2 dischargers , positioned diametrically opposite in the basket at two different

levels. The principle is patented as Shown in the Fig. with this arrangement discharge time has reduced by 40 % which itself increase the performance by 2 to 2.5 cycles per hr. ZUKA ® capacity ranges from 1250 to 2250 Kg Mass./charge and cycle time 22 to 30 with addition of 2nd discharger. ZUKA 1750 prototype has given value under 0.7 Kw/ton of massecuite with 30 cycle per hr as compared with old model 2515 for which energy consumption was 0.9 Kw/ton massecuite for performance of 22.5 cycle per hr.(Ref. www.international sugarjournal.com page 510)

i.ii-BMAs E Series- Shorter cycle time

In order to reduce cycle time with structural modifications, BMA has, continuously over several generations, reduced minimum discharge time required.

i- G-Series with vertical motion axis for discharging (discharging time 40 sec.) ii- B-Series, vertical motion only for the re-setting position; rotary motion for discharging the sugar from the entire basket. (discharging time 25 sec.) iii-Monaxial discharger without up down stroke in E series; the vertical movement has been eliminated altogether (discharging time approx.18-20 sec.) E Series together with the larger basket volume (+60 kg/batch) with shorter discharge time provides with 8% higher throughput.

(Ref. New Approaches in Batch Centrifugal Design and its operational Benefits, Irma and Hans J. Schidt-BMA).

I-Dry Refined Seed Belt Conveying System

Ranipur Sugar Mills has installed belt conveyor to convey dry seed sugar from sugar grader to Refined Seed Magma cum Crystallizer. Belt conveyor replaced the refined seed magma mixture, refined seed pump and three operational staff. Detail as Below:

I.i-Belt specifications

Double Ply rubber Belt Size(length x width) = 30.5 x 0.490 meter Ground height from Sugar grader side = 6.45 m

Ground height from Refined seed crystallizer= 6.725 m

Linear speed of Belt = 1 ft/sec

Motor Power = 7.5 Kw

I.ii-Financial Savings:

Power installed at refined magma mixture = 7.5 Kw
Refined Seed Pump Drive = 22.5 Kw
Total Installed power at Refined Seed preparation Station= 30 Kw
Financial Saving with avg. crushing season of 130 days
Kwhr saving = 22.5 x 24 x 130 = 70,200 kw
Steam saving = 70,200 kw x 12 kg/kw= 842,400 Kg

Bagasse saving = 842,400/2, (1 kg bag. Produces 2 kg steam) = 4,221,200 Kg. Financial Savings= 421200×2.2 Rs./kg bagasse = Rs.926,640 Financial Staff Saving= $3 \times 12000 \times 130/30$ =Rs. 156,000 Total Financial Saving per season = 926,640 + 156,000 =Rs.1,082,640

7. Bagasse fired Boilers

The thermal efficiency of the power plant rises with an increase in boiler pressure. This efficiency increase occurs up to maximum value around 160 bars. Beyond this pressure latent heat decreases drastically, resulting in less heat being transferred to the maximum cycle temperature. This aspect can be easily noted from temperature entropy diagram. In Pakistan Sugar Industry trend setting of High pressure Boilers Ranging from 60 to 100 Bar is encouraging. High Pressure boiler offers many advantages over low pressure boiler as listed below:

- a. It produces more Kcal per ton of output steam for converting it to electrical energy through H.P Turbines .
- b. Generally 1 kg of Bagasse produces 2.0 kg Steam of pressure 65 Bar and temperature of 450 $^{\circ}$ C, and
 - i- Condensing turbine consumes 3.9 Kg steam to generate 1 kw power through alternator.
 - ii. Consumption of high pressure steam for Extraction turbine is different with different extraction steam temperature, pressure and flow.
- c. Fuel consumption per Kcal of steam production is low due to high degree of control and breakage of thermal bounding of water molecules at high pressure and temperature.
- d. It requires high purity feed water of following characteristic (900 Psi Boilers)

Sr.No	Description	Values	Units
1	Dissolved O ₂	7	Ppb
2	PH	8.5 to 9.0	
3	Iron	Less than 0.02	Ppm
4	Copper	Less than 0.015	Ppm
5	Silica	Less than 20	Ppm
6	Total alkalinity	Less than 150	Ppm
7	Conductivity	Less than 1200	Micro ppm

e. Recommended limits of gaseous contents and temperature in Flue gases

Sr.No.	Gas Type	Recommended	Remarks
		Limits	
1	O ₂	Not more than	Higher O ₂ percentage promotes loss of
		8.0 %	heat many folds through flue gases as 1
			part of O ₂ will carry 3.3 parts of N ₂ by
			weight and 1 kg of air will carry 0.5 kg
			water content through moisture
2	CO ₂	10 -12 %	CO ₂ presence indicates the
			combustion of fuel, Higher CO ₂ level
			indicates higher Degree of Combustion
	СО	Less than 100	CO presence indicates incomplete
		ppm	combustion of fuel, Higher CO level
			indicates higher degree of Combustion
			loss
	Temperature	Less than 200 ^o C	

f-Factors effecting Boiler Efficiency

i Moisture contents of Bagasse

i.i 50% water content in Bagasse takes away 5900 KJ heat per kg bagasse while leaving with flue gases, which is a main reason of lower combustion efficiency of bagasse fired boilers.

- i.i1 % drop in Moisture through milling control or by bagasse dryer reduces 1.6% heat losses in Flue gasses.
- i.ii 1% decrease in Moisture in bagasse increase boiler efficiency by 0.8 %

f.II Excess Air

Bagasse contains $22\% O_2$ in it by birth. Theoretically It requires 3.2 kg air per kg bagasse for combustion but practically it requires 25 - 30% excess air for good combustion.

1% reduction in excess air improves 0.6 % boiler efficiency.

f.iii Flue gas temperature:

22 0 C rise in flue gasses temperature decreases thermal efficiency by 1 %.

f.iv O₂ level in Flue Gases

Monitoring O_2 level in flue gases is the best indicator for air fuel ratio control for efficient combustion .

f.iv.i 3 % decrease of O_2 in flue gases promote fuel saving of 2%.

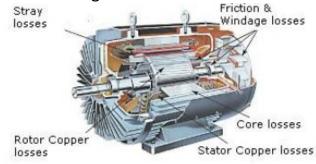
f.v Feed Water Temperature

15 °C rise in feed water temperature rises thermal efficiency by 3 %.

f.iv Combustion Air Preheating

20 $^{\circ}$ C rise in combustion air rises thermal efficiency by 1 %.

f.v- Boiler water tube soothing and scaling


f.v.i-3 mm thick soot layer on external surface boiler tube can cause an increase in 2.5 % in fuel combustion.

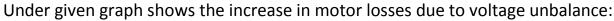
f.v.ii-3 mm scale deposit inside boiler tube can cause an increase in 8 % fuel combustion.

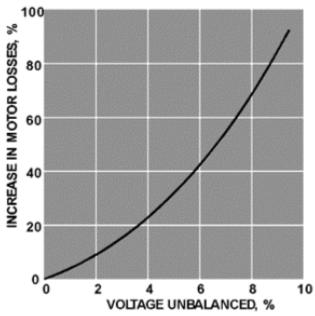
8. Electrical Motors

a. Power loss in Motors

Indicated in fig and table below:

Table: Electrical Losses in the Motor


	2-Pol Average	4-Pol Average	Factors Effecting
Losses Type			Losses
Core Losses	19 %	21%	Electrical steel, air gap.
			Saturation
Friction and	25 %	10%	Fan Efficiency,
winding Losses			Lubrication, Bearings
Stator Copper	26 %	34 %	Conductor Area, mean
Losses			length of turn, heat
			dissipation
Rotor Copper	19 %	21 %	Bar and end ring area
Losses			and material
Stray Load Losses	11 %	14 %	Manufacturing process, slot
			Design, air Gap


(Ref:

b. Effect of Voltage unbalance on Motor Losses

If the measured voltage are 420, 430 and 440V, the average is 430V and the deviation is 10V.

The % Voltage Unbalance will be = $10V \times 100/430 = 2.3 \%$ 1% Voltage unbalance will increase the motor losses by 5 %.

c. Importance of Motor running Cost - Life Cycle Cost

Motors can be considered as consumable items not a Capital items considering the current energy prices. Importance of the running cost can be seen from the Table given below:

Motor Rating(Kw)	7.5	7.5	37	37
Efficiency(%)	86	88	92	93
Power input(Kw)	8.72	8.52	40.22	39.78
Running Hours	6000	6000	6000	6000
Energy Input(Kw/Yr.)	52320	51120	241320	238680
Running Cost(@	784800	766800	3619800	3580200
Rs.15/Kw.hr)				
Running Cost for 10	7848000	7668000	36198000	35802000
Years				
Difference	180,000	-	396,000	-
First Cost(Rs.)	15000	18000	80000	96000
First Cost as % of	0.20	0.23	0.22	0.27
running cost for 10				
years				

c.i Remarks:

c.i.i 7.5 Kw motor of 86 % efficiency consumes extra electricity of Rs.180,000/- in its life cycle which is 12 times higher than its purchased cost as compared with same rated motor of 88% efficiency.

c.i.ii 37 Kw motor of 92 % efficiency consumes extra electricity of Rs.396,000/-in its life cycle which is 4.95 time higher than its Purchased cost as compared with same rated motor of 92 % efficiency.

d. Increased cost due to Oversized Motor

Motor Load	KW	15	15	15
Requirement				
Motor Rating	KW	15	30	55
Motor eff. at Operating	(%)	89	89	84
Load				
Input Power	Kw	16.85	16.85	17.85
Total Kwhrs (6000	Kwhrs.	101100	101100	107100
hrs/year)				
Input Energy Cost/year	Rs.	1516500	1516500	1606500
(Rs.15/Kw.hr)				
Motor Power Factor		0.89	0.75	0.50
Input KVA		18.93	22.44	35.70
Energy Difference	Kwhrs	-	-	6000
Motor Purchased cost	(Rs.)	250000	55000	95000
Increase in investment	Rs.	-	30000	70000
Increase in running	Rs.	-	-	90000
cost per year				

Remarks: 44 kw oversized motor than required Kw motor cost extra Rs.70,000/-in purchased price and Rs.90,000/- in running cost per annum.

9. Soft Starters and Variable Frequency Drives(VFD).

a. Soft Starters

Soft starter is a solid state device that protects AC electric motors from damage caused by sudden influxes of power by limiting the large initial inrush of current associated motor start up . They provide a gentle ramp up to full speed and used only at startup.

Soft Starters are used where speed and torque control are required only at start up. Application is sugar industry at the startup of cane cutter, Raw Centrifugal Machines, ID Fan Motors and heavy duty Feed water pumps.

b. Variable Frequency Drives

The VFD is motor control device that protects and controls speed of an AC induction motor during start up, stop and running cycle.

b.i. Energy saving with VFD

VFDs offer greatest energy saving for fans and pumps. It regulates the speed of the mechanical equipment to control the flow by adjusting the driving motor speed. Energy saving with VFD is based on affinity law which states "Flow changes linear with speed, Pressure is proportional to the Square of speed and power is proportional to the cube of the speed". It means, if we drop the speed of pump to 80% of its rated speed to control the flow rate the power will reduced to the half of its rated power. (0.8)³=.512=51.2 percent.

For energy saving, throttling the output valve for centrifugal pumps and regulating pressure relief valve for high pressure Boiler water feed pumps to control flow and damping control to regulate boiler furnace pressure is not a solution but control of speed of pump or fan through VFD.

Application places in sugar industry where flow or pressure regulating is required, like Centrifugal pumps, ID, FD Fans, Injection pumps and Boiler Feed pumps etc.